SPEKTROSKOPIA OSCYLACYJNA

Rozróżniamy dwa główne typy spektroskopii oscylacyjnej ze względu na naturę oddziaływania promieniowania z cząsteczkami:

- Spektroskopia w podczerwieni, czyli IR (*infra red spectroscopy*): opiera się na zjawisku absorpcji promieniowania, podobnie jak np. spektroskopia absorpcyjna UV-Vis, ale o większej długości fali, czyli mniejszej liczbie falowej (od kilkuset do kilku tysięcy cm⁻¹).
- 2. Spektroskopia oscylacyjna Ramana (*Raman spectroscopy*): opiera się na zjawisku rozpraszania promieniowania (ale z zakresu UV-Vis!).

Podstawy fizyczne: model oscylatora harmonicznego

- Oscylacje molekuł można rozpatrywać wykorzystując modele mechaniczne, posługując się prawami mechaniki klasycznej i dodając kwantowanie energii.
- Drgania atomów w cząsteczce można rozpatrywać na modelu oscylatora harmonicznego, w którym rolę "sprężyny" pełnią elektrony tworzące wiązania chemiczne.

Prawo Hooke'a: siła *F* jest proporcjonalna do wychylenia oscylatora ze stanu równowagi, wychylenie definiujemy jako: $q = r - r_e$

Podstawy fizyczne: kwantowy model oscylatora harmonicznego

oscylacje rdzeni atomowych nie ustają nawet w T = 0 K: !

Model oscylatora harmonicznego

- Częstość drgań układu jest tym większa i im większa jest stała siłowa k, czyli kiedy wiązanie między dwoma atomami jest silniejsze.
- Z drugiej strony częstość drgań maleje wraz ze wzrostem masy zredukowanej m_{red}.
- Częstości wibracyjne drgań podstawowych są rzędu 10¹³ s⁻¹, czyli 10 THz.
 Reguły wyboru:
 - 1. Dozwolone są przejścia między sąsiednimi poziomami $\Delta v = \pm 1$
 - 2. Warunkiem aktywności w widmie IR jest zmiana momentu dipolowego w czasie drgania

 $\left(\frac{\mathrm{d}\mu}{\mathrm{d}q}\right)_{q=0}\neq 0$

Model oscylatora anharmonicznego

• Lepiej opisuje zachowanie rzeczywistych cząsteczek niż model oscylatora harmonicznego

$$E(v) = \frac{h\omega}{2\pi} \left\{ \left(v + \frac{1}{2} \right) - x_e \left(v + \frac{1}{2} \right)^2 \right\}$$

$$\Delta E(v, v+1) = \frac{h\omega}{2\pi} \{1 - 2x_e(v+1)\}$$

v₀ - częstotliwość
 oscylatora harmonicznego

x_e - stała anharmoniczności

<u>WAŻNE</u>: Różnica energii sąsiednich poziomów oscylacyjnych maleje wraz ze wzrostem v

Model oscylatora anharmonicznego

$$U(r) = D_e \left(1 - e^{-\alpha (r - r_e)^2}\right)$$

r_e – położenie równowagowe, D_e – głębokość studni, **D**₀ – energia dysocjacji α – parametr opisujący szerokość studni.

$$x_e = \frac{\alpha^2 h}{2\mu\nu_0} = \frac{h\nu_0}{4D_e}$$

μ – masa zredukowana v_0 - częstość osc. harm.

Atomy w cząsteczce wykonują drgania wokół położenia równowagi.

- Cząsteczka składająca się z N atomów ma 3N stopni swobody.
- 3 stopnie swobody potrzebne są do opisu translacji cząsteczki (x, y, z jej środka masy).
- 3 (2 dla cząsteczki liniowej) stopnie swobody do opisu rotacji.
- Zatem 3*N*-6 (3*N*-5 dla cząsteczki liniowej) stopni swobody opisuje oscylacje normalne cząsteczki.

- Ze względu na zmianę kątów między wiązaniami:
- Rozciągające (nie zmieniające kątów) v
- Zginające (zmieniające kąty)

nożycowe – δ

- wahadłowe ρ
- wachlarzowe ω
- skręcające τ
- Ze względu na symetrię drgań:
- Symetryczne
- Asymetryczne

Drgania cząsteczki trójatomowej

Drgania cząsteczek trójatomowych

Drgania normalne cząsteczki CO₂

TYPY DRGAŃ GRUPY CH₂

Drgania deformacyjne pierścienia aromatycznego

Ŷс-н poza płaszczyznę

szkieletowe

POMIAR WIDMA IR

• **Spektrometr dyspersyjny** składa się z trzech podstawowych elementów: źródła promieniowania, monochromatora i detektora. Źródłem promieniowania jest najczęściej włókno (domieszkowany ZrO₂, SiC) rozgrzane do temp. 1000-1800°C wytwarzające ciągłe widmo promieniowania.

• **Monochromator** jest układem w którym promieniowanie jest rozpraszane (np. z użyciem pryzmatu) a następnie wydziela z widma rozproszonego fale o ściśle określonej długości. Odbywa się to przy użyciu szczelin o regulowanej szerokości i systemu luster. Taka wiązka kierowana jest na próbkę, a po jej przejściu trafia do detektora (termicznego lub fotonów).

Przygotowanie próbek do pomiarów IR

Ciała stałe:

- roztwór (np. CCl₄)
- pastylka (KBr)
- zawiesina w oleju parafinowym (nujol)

Ciecze:

- roztwór
- film

Zakresy przepuszczalności rozpuszczalników w spektroskopii IR

^a The open regions are those in which the solvent transmits more than 25% of the incident light at 1 mm thickness.

^b The open regions for mulling oils indicate transparency of thin films.

Spektrometr fourierowski (FT-IR)

- Rejestracja widma polega na prześwietleniu próbki wiązką promieniowania IR z całego badanego zakresu.
- Po przejściu tej wiązki przez próbkę następuje interferencja z wiązką z tego samego źródła, która jednak nie przeszła przez próbkę.

Spektrometr fourierowski (FT-IR)

Spektrometr fourierowski (FT-IR)

- Na podstawie sygnału z detektora (po przejściu wiązki przez próbkę) tworzony jest interferogram będący zapisem natężenia sygnału interferencyjnego w funkcji długości wynikającej z położenia ruchomego lustra.
- Operacja matematyczna (transformacja Fouriera) zamienia otrzymane widmo z postaci intensywności w funkcji długości do postaci intensywności w funkcji częstości (liczby falowej).

 $F(\bar{\nu}) = \int_{-\infty}^{\infty} F(x) \cos 2\pi x \bar{\nu} dx$

Technika ATR (osłabione całkowite odbicie, *attenuated total reflectance*)

Spektrometr FT-IR ATR (odbiciowy) umożliwia pomiar widm IR niewielkich próbek (kilka mg)

Technika ATR

Kryształy ATR

- Selenek cynku ZnSe
- German
- KRS-5 (TIBr_{0.4}I_{0.6})

 Położenia pasm absorpcyjnych zazwyczaj przedstawiane są za pomocą liczby falowej najczęściej w cm⁻¹ lub (rzadziej) długości fali w μm.

$$\bar{v}[cm^{-1}] = \frac{10^4}{\lambda [\mu m]}$$

 Widmo absorpcyjne jest przedstawiane w układzie współrzędnych x,y, gdzie na osi x jest liczba falowa (długość fali) promieniowania podczerwonego, a na osi y procent transmitancji (*T*) lub absorbancja (A).

Dlaczego liczba pasm na widmie nie pokrywa się z liczbą drgań normalnych?

- Częstotliwości drgań poza badanym zakresem
- Pasma są zbyt słabe
- Pasma nakładają się na siebie
- Degeneracja drgań
- Występowanie nadtonów i drgań sprzężonych
- Drgania nie powodują zmiany momentu dipolowego cząsteczki d μ /dq = 0

Drgania sprzężone

- Wiązania chemiczne w cząsteczce nie drgają niezależnie od siebie,
- Na częstotliwość drgań mają wpływ sąsiednie wiązania, zwłaszcza jeśli:
- mają tę samą symetrię,
- mają podobną częstotliwość drgań własnych
- Sprzężenie jest znikome, jeśli wiązania:
- są znacząco oddalone od siebie
- są prostopadłe do siebie

Rezonans Fermiego

- zjawisko pojawienia się w widmie oscylacyjnym dwóch leżących blisko siebie pasm zamiast jednego.
- występuje wtedy, gdy energie dwóch przejść oscylacyjnych (często przejścia podstawowego i nadtonu lub przejścia podstawowego i tonu złożonego) o takiej samej symetrii są do siebie zbliżone
- w cząsteczce CO₂ nadton drgania zginającego i ton podstawowy symetrycznego drgania rozciągającego mają niemal jednakową energię, co skutkuje pojawieniem się w widmie oscylacyjnym (Ramana) dwóch pasm w położeniach 1285 cm⁻¹ i 1388 cm⁻¹, zamiast oczekiwanego jednego w położeniu 1354 cm⁻¹

daleka podczerwień (far IR)

1000- 400 cm⁻¹ - występują drgania deformacyjne wiązań C-H w układach aromatycznych i alkenylowych (*out-of-plane* – w kierunku prostopadłym do płaszczyzny utworzonej przez wiązania π atomów węgla

1500-1000 cm⁻¹ - obszar wykorzystywany do identyfikacji (analizy jakościowej), tzw. *finger print* - drgania rozciągające wiązań pojedynczych atomów o zbliżonych masach: C-C, C-N, C-O, drgania deformacyjne różnych wiązań, drgania szkieletowe cząsteczki

2000-1500 cm⁻¹ - drgania rozciągające wiązań podwójnych C=C, C=N, C=O, N=N, N=O

2500-2000 cm⁻¹ drgania rozciągające wiązań potrójnych C=C , C=N

4000-2500 cm⁻¹ - drgania rozciągające wiązań pojedynczych pomiędzy atomami znacznie różniącymi się masą, np. C-H, O-H, N-H, S-H

bliska podczerwień (near IR)

Przybliżone liczby falowe drgań rozciągających wiązań X-H [cm⁻¹]

B-H	C-H	N-H	O-H	F-H
2400	3000	3400	3600	4000
AI-H	Si-H	P-H	S-H	CI-H
1750	2150	2350	2570	2890
	Ge-H	As-H	Se-H	Br-H
	2070	2150	2300	2650

Przybliżone zakresy absorpcji w widmach IR [cm⁻¹]

cm ⁻¹	4000	3600	3200	2800	2400	2000	1800	16	00	1400	1200	1000	800	600
	3800	3400	3000	2600	22	00		m/w		 m			C W	
Alkenes						+							5 W	
Alkynes			- <u>\$</u>		- <u>w</u> -						•			<u> </u>
Aromatics						+		m	m	-+			S	
OH*		m/sh s/	br							-+		5		
C=0						+		S		-+				
NH ₂ NH		<u>m w</u>				+				-+				
C≡N					m_w									
NO ₂						+			S	s/m				
SH				W		+				-+				
S=0												<u>S</u>		
0=S=0						+				<u>S</u>	<u>S</u>			
	3800	3400	3000	2600	22	00	I		I	1	1	I.	ī	I
cm^{-1}	4000	3600	3200	2800	2400	2000	1800	16	00	1400	1200	1000	800	600

*Free OH, medium and sharp; bonded OH, strong and broad

Oznaczenia względnej intensywności pasm w widmie IR

- **vs** very strong (bardzo silne)
- s strong (silne)
- **m** medium (średnio intensywne)
- w weak (słabe)
- v variable (zmienna intensywność)
- ponadto:
- **sh** sharp (ostre)
- br broad (szerokie)

n-Alkany

- 4 typy wibracji:
 - rozc. i zginające wiązań C-H i C-C
 - C–C zgin.: ca. 500 cm⁻¹ (poza zakresem spektralnym)
 - C-C rozc.: 1200-800 cm⁻¹, słabe

trudna interpretacja (fingerprint)

najbardziej charakterystyczne

- C-H rozc.: zakres 3000 2840 cm⁻¹
 - CH₃: 2962 cm⁻¹, asymetryczne 2872 cm⁻¹, symetryczne
 - CH₂: 2926 cm⁻¹, asymetryczne

2853 cm⁻¹, symetryczne

n-alkany

finger print

Podobne, ale nie identycznel

Alkeny

- liniowe:
 - C=C rozc.: średnia lub słaba absorpcja w zakresie 1667-1640 cm⁻¹

• C=C–H: - rozc.: ≥ 3000 cm⁻¹

Alkeny

• alkeny cykliczne - drganie rozc. C=C – wpływ naprężenia pierścienia

- dieny skumulowane:
 - C=C=C rozc. asym.: 2000–1900 cm⁻¹
- dieny sprzężone:
 - drganie rozc. cząsteczek bez centrum symetrii : 2 pasma
 - cząsteczki symetryczne, np. 1,3-butadien, tylko pasmo asym.

 1600 cm^{-1} (as)

1650 cm⁻¹ (as) 1600 cm⁻¹ (s)

Dieny sprzężone

Alkiny

- C≡C rozc.: słabe pasmo przy 2260-2100 cm⁻¹
- nie występuje w symetrycznych alkinach (bardzo słabe dla 'pseudo'- symetrycznych alkinów
- C≡**C−H** rozc.:
 - 3333-3267 cm⁻¹
 - silne, wąskie (w porównaniu z pasmem OH lub NH)
- C≡**C–H** zginające:
 - 700-610 cm⁻¹: silne, poszerzone
 - 1400-1220 cm⁻¹, 1. nadton

Alkiny terminalne

Węglowodory aromatyczne (benzen)

- Drgania zginające C-H poza płaszczyznę (*out of plane,* γ):
 - 900–675 cm⁻¹
- silne pasma, sprzężone z sąsiednimi atomami wodoru w pierścieniu
- położenie i ilość pasm wskazuje na typ podstawienia pierścienia
- C=C-H rozc.: 3100-3000 cm⁻¹
- C=C rozc: 1600-1585; 1500-1400 cm⁻¹
- C=C zginające pierścienia (*out of plane*): 600-420 cm⁻¹

ZWIĄZKI AROMATYCZNE

2000-1600 nadtony i pasma kombinacyjne drgań poza płaszczyznę; kształt charakterystyczny dla typu podstawienia

Weglowodory aromatyczne

Pirydyna

ZWIĄZKI HYDROKSYLOWE

wewnątrzcząsteczkowe wiązanie wodorowe; raczej ostre, niezależne
3500 od stężenia np. salicylany

WPŁYW WIĄZANIA WODOROWEGO NA PASMO v_{OH}

Rys. 7.39. Widma w podczerwieni alkoholu izobutylowego. Roztwory alkoholu w CCl₄. Stężenia: a) 0,1 mol/dm³; b) 0,2 mol/dm³; c) 0,3 mol/dm³; d) 1 mol/dm³

WPŁYW STĘŻENIA NA PASMO ν_{OH}

Drganie rozc. C–O

• Alkohole (1260-1000 cm⁻¹⁾

I-rzędowy: 1050-1085 cm⁻¹ II-rzędowy: 1085-1125⁻¹ III-rzędowy: 1125-1200 cm⁻¹ • Fenole (1800-1260 cm⁻¹)

Etery

• pasma drgań rozc. C–O–C są silne ze względu na duży moment dipolowy

Etery alifatyczne: silne pasmo drgania rozc. asymetrycznego 1150-1085 cm⁻¹ (zwykle ok. 1125 cm⁻¹), słabe pasmo drgania rozc. symetrycznego przy niższych częstościach

Aminy

- NH rozc.
 - w rozcieńczonych roztworach aminy I-rzędowe (RNH₂) mają 2 pasma w zakresie 3500-3400 cm⁻¹ od drgania asymetrycznego i symetrycznego N-H.
 - w rozcieńczonych roztworach, I-rzędowe (R₂NH) mają pojedyncze pasmo przy 3350-3310 cm⁻¹.
 - słabsze i ostrzejsze niż OH
 - czyste alkilowe aminy I-rzędowe absorbują przy 3400-3300 i 3330-3250 cm⁻¹.

Aminy aromatyczne absorbują przy nieco wyższych częstościach.

ZWIĄZKI KARBONYLOWE

Silne pasmo C=O rozc.

Czynniki wpływające na położenie: (1) charakter elektronowy i steryczny grup sąsiadujących (2) efekty rezonansowe (3) wiązanie wodorowe (4) naprężenie pierścienia (5) stan skupienia

Wpływ efektów elektronowych na położenie pasma drgania rozc. grupy C=O

dominuje efekt indukcyjny (<i>I</i> -)	
G	ν C=O (cm ⁻¹)
Cl	1815-1785
F	$\sim \! 1869$
Br	1812
OH (monomer)	1760
OR	1750 - 1735
dominuje efekt	rezonansowy (<i>M</i> +)
G	ν C=O (cm ⁻¹)
NH ₂	1695-1650
SR	1720-1690

Ketony

• alifatyczne: silne pasmo 1715-1720 cm⁻¹

 efekt rezonansowy - grupa alkenylowa lub fenylowa przesuwa pasmo w kierunku niższej częstości: 1685-1666 cm⁻¹

Ketony cykliczne

Wartość kąta walencyjnego θ wpływa na częstość absorpcji pasma drgania grupy C=O

Aldehydy

C=O rozc.

- Alifatyczne: 1740-1720 cm⁻¹
- Podstawniki elektrono-akceptorowe przesuwają w kierunku wyższych częstości
- Grupy sprzężone przesuwają pasmo w kierunku niższych częstości (1710-1685 cm⁻¹)

C–H rozc.

2830–2695 cm⁻¹ - 1 lub 2 pasma (drugie z nich jest nadtonem drgania zginającego wiązania C–H aldehydu wzmocnionym przez rezonans Fermiego)

ALDEHYDY

Kwasy karboksylowe

OH rozc.

 pasmo wolnej grupy OH (ca. 3520 cm⁻¹) tyko w fazie gazowej lub bardzo rozcieńczonych (<0.01 M) roztworach w rozp. niepolarnym

silne drganie rozc. OH w zakresie 3300–2500 cm $^{-1}$ z maksimum przy ok. 3000 cm $^{-1}$

C=O rozc.

• monomer: 1760 cm⁻¹ – kwasy alifatyczne

• dimer: Wiązanie wodorowe obniża częstość, zwłaszcza jeśli jest wewnątrzcząsteczkowe

Estry karboksylowe

C=O rozc.

- nasycone estry alifatyczne: C=O: 1750–1735 cm⁻¹
- mrówczany, α , β -nienasycone, benzoesany: 1730-1715 cm⁻¹
- estry winylowe i fenylowe: 1770-1780 cm⁻¹

C-O rozc. (silne pasma)

- nasycone estry alifatyczne (oprócz octanów): C–O: 1210–1163 cm⁻¹
- octany: 1240 cm⁻¹
- α,β -nienasycone: 1300–1160 cm⁻¹
- benzoesany : 1310-1250 cm⁻¹

Estry karboksylowe

Chlorki kwasowe Cl R 1815–1785 cm⁻¹ $1800-1770 \text{ cm}^{-1}$ ACETYL CHLORIDE INFRARED SPECTRUM 0.8 0.6 Transmitance 0.4 0.2 0.0 2000 Wavenumber (cm-1) 1000 3000 NIST Chemistry WebBook (https://webbook.nist.gov/chemistry) 100

Bezwodniki kwasowe

Amidy

C=O rozc. (I pasmo amidowe):

NH deform. (II pasmo amidowe):

Amidy cykliczne (laktamy)

1650 cm⁻¹ 1750-1700 cm⁻¹

1760-1730 cm⁻¹

Nitryle

Związki nitrowe

• 2 pasma drgań rozc. asymetrycznego i symetrycznego

GRUPA SULFONIANOWA SO₃R

TABLE 2.8 Stretching Frequency of Sulfonates, Sulfates, Sulfonic acids, and Sulfonate salts

Class	Stretching Frequency (cm ⁻¹)
Sulfonates (covalent)	1372-1335, 1195-1168
Sulfates (organic)	1415-1380, 1200-1185
Sulfonic acids	1350-1342, 1165-1150
Sulfonate salts	$\sim 1175, \sim 1055$

Spektroskopia oscylacyjna Ramana

- Efekt Ramana jest oparty na nieelastycznym rozpraszaniu promieniowania monochromatycznego
- dotyczy tylko znikomego ułamka wiązki fotonów (ok. 10⁻⁷).

Chandrasekhara Venkata Raman (चन्द्रशेखर वेङ्कट रामन) Nagroda Nobla 1930

Rozpraszanie Ramana:

- Polaryzowalność α zmienia się w czasie drgania
- Polaryzowalność jest parametrem, który opisuje w jakim stopniu orbital molekularny cząsteczki może ulec deformacji pod wpływem pola elektrycznego (E)
- Pole elektryczne może zdeformować chmurę elektronową powstaje wówczas indukowany elektryczny moment dipolowy μ_{ind}

$$\mu_{ind} = \alpha \mathbf{E}$$

Natężenie składowej elektrycznej pola elektromagnetycznego zmienia się w czasie:

$$E = E_0 \cos(2\pi \nu_0 t)$$

Dipol indukowany drga z częstotliwością v_0 :

$$\mu_i = \alpha E_0 \cos(2\pi \nu_0 t)$$

Polaryzowalność zmienia się w trakcie oscylacji o częstotliwości v:

$$\alpha(q) = \alpha_0 + \left(\frac{d\alpha}{dq}\right)_{q=0} Q\cos(2\pi\nu t)$$

Po podstawieniu mamy wyrażenie opisujące zmianę dipola indukowanego w czasie z uzwględnieniem oscylacji molekuły:

$$\mu_i = \alpha_0 E_0 \cos(2\pi\nu_0 t) + \left(\frac{d\alpha}{dq}\right)_{q=0} QE_0 \cos(2\pi\nu_0 t) \cos(2\pi\nu t)$$

Z trygonometrii wynika, że: $\cos \alpha \cos \beta = \frac{1}{2} \cos(\alpha + \beta) + \frac{1}{2} \cos(\alpha - \beta)$

A zatem można zapisać:

$$\mu_{i} = \alpha_{0} E_{0} \cos(2\pi\nu_{0}t) + \frac{1}{2} \left(\frac{d\alpha}{dq}\right)_{q=0} QE_{0} \cos 2\pi(\nu_{0} - \nu)t + \frac{1}{2} \left(\frac{d\alpha}{dq}\right)_{q=0} QE_{0} \cos 2\pi(\nu_{0} + \nu)t$$

Jeśli w trakcie drgania $\left(\frac{d\alpha}{dq}\right)_{q=0} \neq 0$, to drgania dipola indukowanego będą miały 3 składowe o częstotliwościach v_0 , $(v_0 - v)$ i $(v_0 + v)$, co oznacza wystąpienie 3 pasm w widmie promieniowania rozproszonego przez próbkę

- Rozpraszanie Rayleigha: v_{Rayleigh} = v₀ oddziaływanie elastyczne; brak transferu energii między fotonem i molekułą
- Rozpraszanie Ramana: v_{sc} ≠ v₀ oddziaływanie nieelastyczne; występuje transfer energii między fotonem i molekułą

- Linia Stokesa: energia fotonu maleje: v_{stokes} < v₀ (energia oscylacji cząsteczki wzrasta)
- Linia Anti-Stokesa: energia of fotonu wzrasta: v_{anti-stokes} > v₀ (energia oscylacji cząsteczki maleje)

Stokes vs anti-Stokes

- wzór przesunięć Ramanowskich jest taki sam po obu stronach pasma Rayleigha
- wielkość tego przesunięcia jest niezależna od długości fali wzbudzającej
- linie anty-stokesowskie są znacznie mniej intensywne niż odpowiadające im linie stokesowskie
- stosunek intensywności linii anti-stokesowskich względem stokesowskich będzie wzrastał wraz ze wzrostem temperatury, bo rośnie osadzenie wyższych poziomów oscylacyjnych
- zazwyczaj tylko linie stokesowskie są pokazywane w widmie Ramana

Cząsteczka CO₂

Aktywne w widmie Ramanie

Aktywne w IR

Aktywne w IR

Reguły wyboru w widmie oscylacyjnym Ramana

- Δ**v** = ± 1 (następuje zmiana oscylacyjnej liczby kwantowej
- Polaryzowalność molekuły α musi się zmieniać w czasie drgania ściślej pochodna α w punkcie równowagi (q = 0) musi być różna od zera

Cząsteczka CO₂

- Drganie rozciągające symetryczne polaryzowalność zmienia się w czasie oscylacji → pasmo w widmie Ramana 1340 cm⁻¹
- Moment dipolowy nie zmienia się \rightarrow brak pasma w widmie IR przy 1340 cm⁻¹
- Drganie rozciągające asymetryczne polaryzowalność nie zmienia się w czasie oscylacji → brak pasma w widmie Ramana przy 2350 cm⁻¹
- Moment dipolowy zmienia się \rightarrow pasma w widmie IR przy 2349 cm⁻¹

Schemat spektrometru Ramana

Źródła promieniowania

Widmo Ramana wzbudzane jest w świetle widzialnym lub bliskim nadfiolecie

Słaba intensywność widm Ramana – wymagana duża intensywność stosowanych źródeł promieniowania

Ar⁺ : 488.0 i 514.5 nm

Kr⁺ : 530.9 i 647.1 nm

He:Ne: 632.8 nm

Diody Laserowe: 782 i 830 nm

Nd: YAG: 1064 (Nd:Y3Al5O12 - *neodymium-doped yttrium aluminum garnet*); (532 nm podwojona częstość)

Zalety spektroskopii Ramana

- Nie niszczy preparatów
- Skuteczna w wysokich temperaturach
- Łatwo osiągalny zakres małych wartości liczby falowej rzędu 100 cm⁻¹
- Możliwość połączenia mikroskopu ze spektrometrem Ramana
- Problem wody jest mniej istotny niż w IR: widma IR są przesłaniane przez wodę, w widmach Ramana pasma drgań H₂O są o wiele mniej intensywne, choć jej obecność może obniżać czułość

Natężenie pasm w widmach IR i Ramana (R)

 Niepolarnym lub słabo polarnym ugrupowaniom atomów odpowiadają pasma o dużym natężeniu w R natomiast silnie polarnym grupom – pasma o dużym natężeniu w IR.

- 2. Cząsteczkom mającym środek symetrii odpowiadają inne pasma w R, a inne w IR (zakaz alternatywny).
- 3. Drgania rozciągające alifatyczne C-H są intensywne w R, słabe w IR.
- 4. Drgania rozciągające aromatyczne C-H są średnio intensywne w R, słabe w IR
- 5. Drgania zginające C-H w związkach aromatycznych są silne tylko w IR
- Pasma odpowiadające drganiom rozciągającym grup polarnych takich jak O-H,
 N-H są intensywne w IR natomiast bardzo słabe w R.

Natężenie pasm w widmach IR i Ramana (R)

 Pasma odpowiadające drganiom rozciągającym wiązań wielokrotnych C=C, C=N, N=N itd., są bardzo intensywne w R natomiast bardzo słabe w IR.
 Pasmo C=O w IR jest bardzo intensywne a w widmie Ramana słabsze.
 W widmie R związków pierścieniowych pojawia się tylko jedno intensywne pasmo odpowiadające drganiom symetrycznym – pulsacyjnym pierścienia.
 Częstość drgania pozwala określić wielkość pierścienia.
 Pasma nadtonów i pasm kombinacyjnych są widoczne w IR a w widmach

Ramana ich się nie obserwuje.

Położenie i intensywność pasm w widmach IR i Ramana

Vibration ^a	Region(cm ⁻¹)	Intensity ^b	
		Raman	Infrared
v(O—H)	3650-3000	w	s
v(N—H)	3500-3300	m	m
v(≡C−−H)	3300	w	s
v = C - H	3100-3000	S	m
v(-C-H)	3000-2800	s	s
v(-S-H)	2600-2550	S	w
$v(C \equiv N)$	2255-2220	m-s	s-0
v(C=C)	2250-2100	vs	w-0
v(C=O)	1820-1680	s-w	vs
v(C=C)	1900-1500	vs-m	0-w
v(C=N)	1680-1610	S	m
v(N=N), aliphatic substituent	1580-1550	m	0

Teoretyczne widma IR i Ramana etynu H-C≡C-H

widmo Ramana

EOD

widmo Ramana

widmo Ramana

Porównanie widm IR i Ramana oleinianu metylu

2,5-Dichloroacetofenon, porównanie widm IR i Ramana

Spektroskopia Ramana:

Podsumowanie

Raman jest spektroskopią oscylacyjną podobnie jak IR.

- podstawą metody jest rozproszenie, a nie transmisja czy odbicie promieniowania
- potrzebujemy energii wzbudzającej (laser)
- w praktyce stosujemy zawsze linie stokesowskie ze względu na większą intensywność

Porównanie spektroskopii IR i Ramana

- Zalety spektroskopii Ramana (w porównaniu z IR):
- unika się interferencji z rozpuszczalnikiem i z kuwetami
- brak konieczności przygotowania próbek
- lepsza selektywność, piki są wąskie
- możliwa detekcja drgań nieaktywnych w IR

Wady spektroskopii Ramana:

- wrażliwość na fluorescencję wywołaną przez laser oraz na rozkład próbki
- linie są mało intensywne, pasma Rayleigha są również obecne
- wysoki koszt aparatury

Spektroskopia oscylacyjna: wymagania egzaminacyjne

- Pojęcia podstawowe: stała siłowa wiązania, oscylacje normalne, pasma podstawowe, nadtony, rezonans Fermiego
- Charakterystyka spektroskopowa IR głównych klas związków organicznych, w tym zwłaszcza:
 - 1. położenie pasm wiązań CH (efekt hybrydyzacji)
 - 2. położenie pasm wiązań OH (efekt wiązania wodorowego)
 - 3. związki karbonylowe: wpływ czynników elektronowych i sterycznych na położenie pasma grupy C=O
- Spektroskopia Ramana: podstawy fizyczne, pasma stokesowskie i antystokesowskie, wpływ charakteru wiązania na intensywność odpowiedniego pasma w widmie